


# POSICHRON® Magnetostrictive Position Sensors

### Installation and operation manual



Please read carefully before installation and operation!

# **POSICHRON®**Contents



| Contents | Safety instructions                 | 3  |
|----------|-------------------------------------|----|
|          | Description                         | 6  |
|          | Remarks on environmental materials  | 7  |
|          | Handling of the position magnets    | 7  |
|          | Mounting                            |    |
|          | PCQAxx                              | 8  |
|          | PCFPxx                              | 9  |
|          | PCRPxx                              | 12 |
|          | PCSTxx                              | 13 |
|          | PCST26                              | 18 |
|          | Electromagnetic Compatibility (EMC) | 20 |
|          | Repair and disposal                 | 20 |
|          | Specification of the outputs        |    |
|          | Analog outputs                      | 21 |
|          | U1, U2, U3, U8 voltage outputs      | 21 |
|          | I1, I2 current output               | 21 |
|          | Analog outputs / Signal wiring      | 22 |
|          | Analog outputs / Version PMU        | 23 |
|          | SSI Serial interface                | 24 |
|          | CANOP CANopen interface             | 25 |
|          | CAN-SAE J1939 interface             | 38 |
|          | Accessories                         |    |
|          | Connector cables                    | 42 |
|          | Magnets for PCQA/PCFP/PCRP          | 45 |
|          | Magnets for PCST                    | 49 |
|          | Appendix                            |    |
|          | Reliability characteristics         | 54 |
|          | Declaration of conformity           | 55 |



## Safety instructions

Do not use POSICHRON® position sensors in safety critical applications where malfunction or total failure of the sensor may cause danger for man or machine.

For safety related applications additional mechanisms (devices) are necessary to maintain safety and to avoid damage.

Disregard of this advice releases the manufacturer from product liability.

The sensor must be operated only within values specified in the catalog or datasheet.

Connection to power supply must be performed in accordance with safety instructions for electrical facilities and performed only by trained staff.

Insulation testing, welding and painting by electrostatic painting system may cause damage to a POSICHRON® position sensor embedded within an equipment (cylinder, working machine etc). Disconnect the sensor unit in case of such treatment and plug in a protective shorting plug to ground all pins to cable shield. Refer to acessories for protective shorting plug.

Cable outputs must be installed in such a way that no moisture can get into the cable.

Crossing the dew point must be avoided.

Protect the sensor against all strong electric or magnetic fields.

Do not expose the sensor or the position magnets to shocks or any kind of impacts.

The flat profile PCFP must be mounted with unmagnetic screws.

Position magnets must be mounted always with unmagnetic screws.

www.asm-sensor.com



**Explanation of used** safety signs and signal words



WARNING, Risk of Injury:

Indicates a potentially hazardous situation, which, if not avoided, could result in serious injury or property damage.

**WARNING**, Risk of Personal Injury or Death: **DANGER** 

Indicates a situation that can result in serious personal

injury or death if not properly avoided.

**WARNING**, Risk of Personal Injury or Death:

**WARNING** Indicates a situation that can result in moderate

personal injury or death if not properly avoided.

**WARNING**, Risk of Personal Injury:

**CAUTION** Indicates a situation that can result in minor personal

injury if not properly avoided.

WARNING, Risk of Property Damage:

NOTICE Indicates a situation that can result in minor to major

property damage if not properly avoided.

MAN-PC-E-2014 ASM GmbH



#### Intended use

The position sensor is intended for distance measurement, when properly mounted and used in the properly rated ambient atmospheric and technical conditions for which the sensor is designated.

#### Unintended use

The unintended use is when the sensor is used outside its specified technical and ambient atmospheric conditions or when improperly mounted..



#### **Description**

The purpose of position sensors is to transform position of a linear and guided movement into an electrical signal. Specifications of measuring range, environment, handling and connections as specified in the catalog, must be followed.

The catalog is part of this instruction manual. If the catalog is not available it may be requested by stating the respective model number.

POSICHRON® is an absolute, contact-free and wear-free position measuring system. It is extremely rugged making it suitable even for applications where other measuring principles would fail. The availability of various constructions – rod, square profile and ultra-flat profile – means that the system can be adapted to suit all kinds of installation conditions.

The POSICHRON® linear measuring system consists of a magnetostrictive wave guide and a movable magnet for determining position. The measuring principle of POSICHRON® position sensors is based on two physical effects: the Wiedemann effect and the Villari effect.

To create the Wiedemann effect, a current impulse is sent through the PO-SICHRON® positional sensor's wave guide. This current impulse generates a circular magnetic field which propagates at the speed of light around the wave guide. If this circular magnetic field makes contact with the magnetic field of the position magnet which is moved lengthways, a torsional mechanical-elastic density wave is triggered at the overlap area of the two magnetic fields as a result of magnetostriction. This wave propagates in the wave guide at approx. 2800 m/s.

The sensor head of the POSICHRON® position sensor contains a detector which detects the arrival of this wave. The magneto-elastic Villari effect is used as the method of detection. The position between the detector coil and the magnet which can be moved lengthways along the POSICHRON® sensor is determined by measuring the time difference between the electrical induction current impulse and the voltage pulse generated via the Villari effect in the detector coil (time-of-flight principle).

This time difference can be converted using various well-known methods into analog or digital output signals. The time-of-flight signals can however also be evaluated directly by commonly-available interface modules or counter and time-measuring devices.

Measurement rate depending on the measurement range

| Measurement rate | Measurement range |
|------------------|-------------------|
| 1 ms             | 100 500 mm        |
| 2 ms             | 500 2000 mm       |
| 5 ms             | 2000 4000 mm      |
| 10 ms            | >4000 mm          |



# Remarks on environmental materials

In order to ensure a perfect magnetic signal of the position magnet all interferences caused by magnetic and/or magnetizable materials have to be avoided.

In principle it is absolutely recommended to use not magnetizable materials for the environment of the sensor. Likewise only not magnetizable screws should be used for the attachment of the position magnet.

Magnetic or magnetizable materials in the environment of the sensor can affect the signal of the position magnet in such a manner that the specified limit values are not kept. In addition it is possible that mismeasurements are caused by magnetic or magnetizable materials.

If the use of magnetizable material (rel. permeability  $\mu r >> 1$ ) is inevitable, the sensor must be protected by suitable methods against magnetic fields ( $H \ge 400 \text{ A/m}$ ). Pay attention to a sufficient distance of the sensor and the magnet to external magnetic fields with field strengths of  $H \ge 400 \text{ A/m}$ ! The magnetic flux density of the environment may not exceed the value of B = 0.5 mT at the position of the magnet and the sensor rod. Magnetic and/or magnetizable materials should be absolutely avoided.

Materials with  $\mu r > 1$  are acceptable if  $Br \le 0.5$  mT resp.  $Hc \le 500$  A/m at the same time, higher values than indicated can lead to failure of the position measurement.

To avoid a local increase of the field strength, additionally all edges near the sensor rod and the position magnet must be provided with a chamfer (1 x 45°).

# Handling of the position magnets

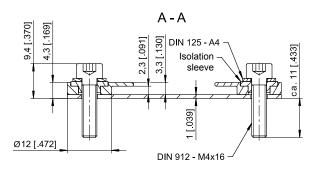


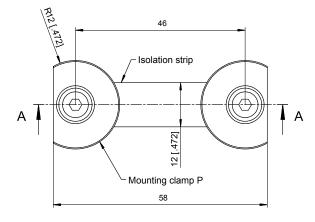
#### Notes about the handling of the position magnets PCMAG

Regardless of the robust design the improper handling of the position magnets can cause reduction in signal quality, in extreme cases signal loss. Therefore a careful handling of the position magnets during installation and operation is recommended.

- The storage and operation temperature of the position magnet must not exceed 100 °C.
- Extremly mechanical shock (drop) must be avoided.
- Do not expose the magnet to strong external magnetic fields (Hmax. < 140 kA/m, ~1,8 kOe).</li>

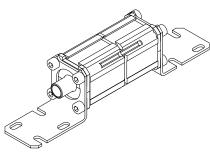
<u>Note:</u> When using multiple magnets the distance between two magnets must be min. 70 mm to identify the single magnets definitely.


www.asm-sensor.com

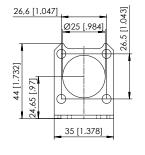


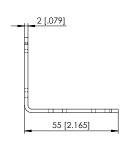

#### **Mounting PCQAxx**

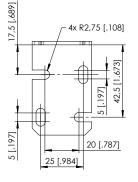
The sensor must be mounted with minimum two mounting sets PCQA-BFS1. For longer profiles one ore more additional mounting sets are necessary in the middle of the profile.

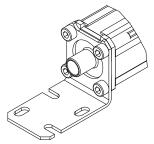

#### Mounting set PCQA-BFS1 with mounting clamps







**Option -BFW Mounting** brackets for PCQA22 and PCQA24


Note: The option -BFW can only be ordered with a new sensor, not separately!

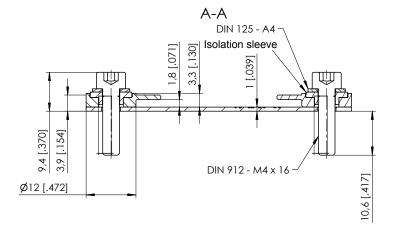


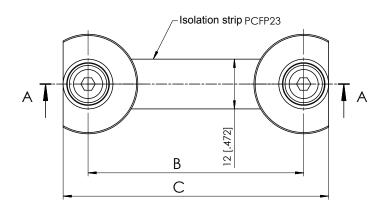

Dimensions in mm [inch]










Mounting PCFPxx

The sensor must be mounted with minimum two mounting sets PCFPxx-BFS1. For longer profiles one ore more additional mounting sets are necessary in the middle of the profile.

Mounting set PCFP23-BFS1 and PCFP24-BFS1 with mounting clamps





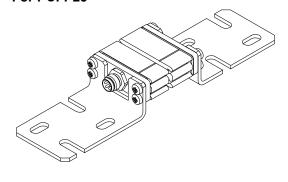
Dimensions in mm [inch]

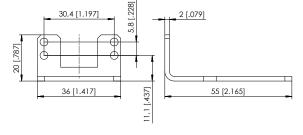
Dimensions informative only. For guaranteed dimensions consult factory.

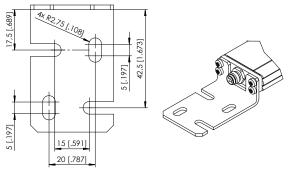
PCFP23 + PCMAG5

PCFP24 + PCMAG5

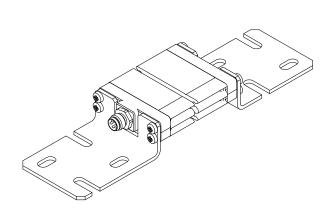
| Dimensions for | POSICHRON model | Dim. B [mm] | Dim. C [mm] |
|----------------|-----------------|-------------|-------------|
| BFS1           | PCFP23          | 52          | 64          |
| DI 01          | PCFP24          | 59          | 71          |

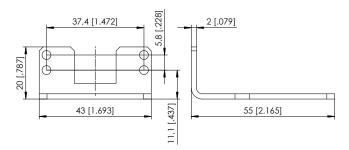

www.asm-sensor.com

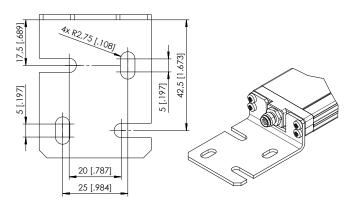




Option -BFW Mounting brackets

Note: The option -BFW can only be ordered with a new sensor, not separately!


#### For PCFP23



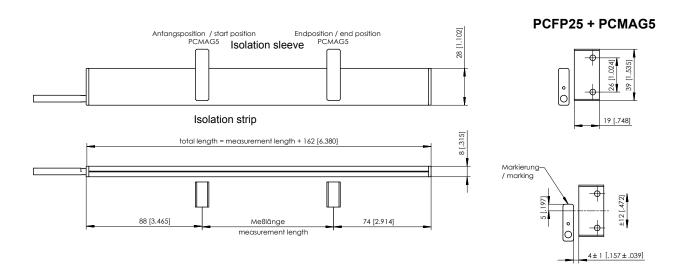



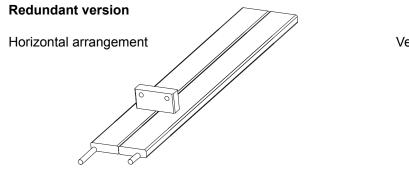


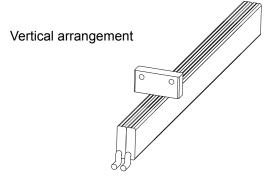

#### For PCFP24



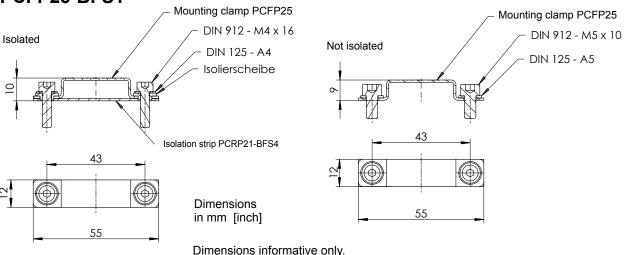






Dimensions in mm [inch]




## Mounting PCFP25


The position sensor must be mounted with min. two mounting sets PCFP25-BFS1 (accessories). For longer profiles one or more additional mounting sets are necessary in the middle of the profile.

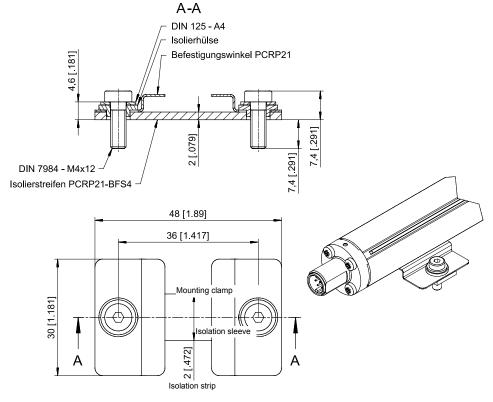






## Mounting set PCFP25-BFS1




For guaranteed dimensions consult factory.



# Mounting PCRP21

The sensor must be mounted with minimum two mounting sets PCRP21-BFS4. For longer profiles one ore more additional mounting sets are necessary in the middle of the profile.

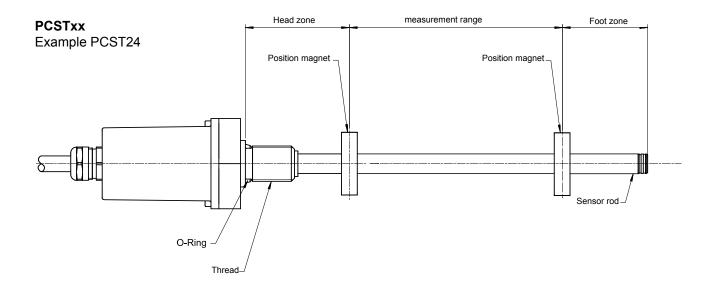
Mounting set PCRP21-BFS4 with mounting clamps

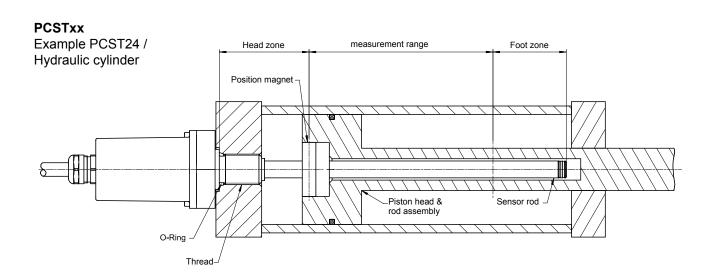


Dimensions in mm [inch]

## Mounting PCRP32

The sensor must be mounted in such a position that the magnet is located above the arrow label on the sensor housing!


Dimensions in mm [inch]



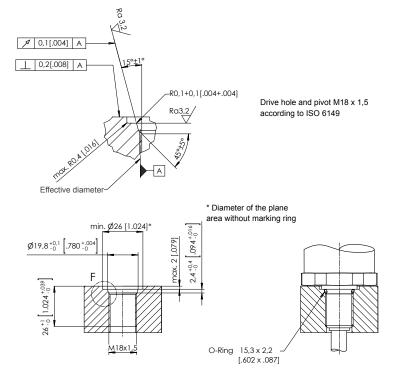

## Mounting PCSTxx

The PCSTxx will be mounted via screw-thread M18 or 3/4 inch.

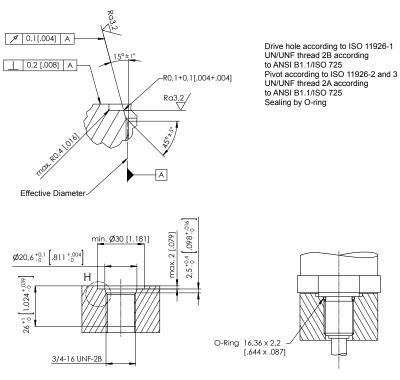
The PCSTxx-M18 resp. PCSTxx-Z3/4 will be mounted via the flange thread (M18 x 1,5 bzw. ¾ inch-16UNF). The mounting face of the sensor head must fit plane to the surface of the hydraulic cylinder. To avoid any damage use a fitting nut for the flange thread. Tighten the sensor, a torque of 50 Nm must not be exceeded. Apply threadlocker to the thread before mounting (recommended: LOCTITE 2701).






Dimensions in mm [inch]



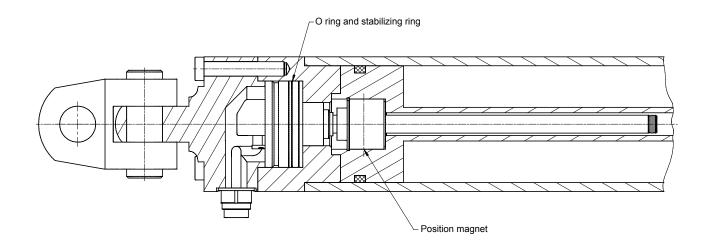

# Mounting PCSTxx

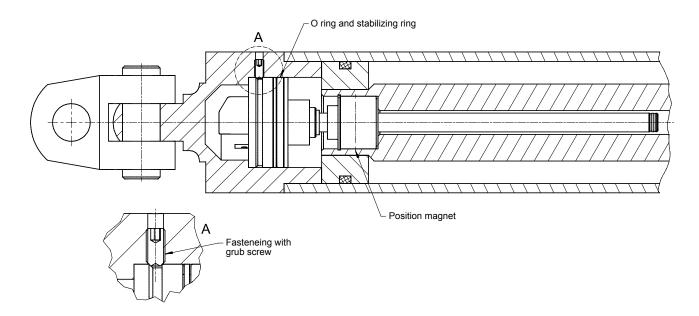
(continuation)

# Mounting hole M18



# Mounting hole 3/4 inch





Dimensions in mm [inch]



Mounting PCSTxx (continuation)

The application range for the rod-style PCSTxx is wide. For one of them, the use in hydraulicic cylinders, the following mounting notes are helpful. The PCSTxx-SV is the plug-in version and, depending on the design of the hydraulic cylinder, will be fastened with a grub screw. For applications in hydraulic cylinders an additional model is available:





Dimensions in mm [inch]

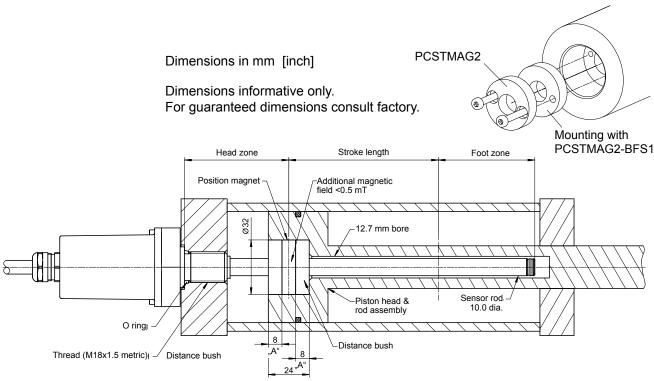
Dimensions informative only. For guaranteed dimensions consult factory.

www.asm-sensor.com



# Mounting PCSTxx (continuation)

The sensor rod of stainless steel is located within the bore of the piston rod. The size of bore must be selected depending on the pressure and the speed of the piston, however a size of at least 12,7 mm (½ inch). The maximum pressure of **400 bar** must not be exceeded.


At the retraction and the extension of the hydraulic cylinder a capacity of  $V = I \cdot A$  (A: sensor cross section = 78,5 mm², I: piston stroke) must be displaced. If the displaced capacity isn't able to flow into or off fast enough a force has an effect on the sensor rod surface, perhaps the rod may break! In order to keep the effect of the force as small as possible, compensation holes of sufficient cross section must be planned, by those the capacity can flow through without generating unnecessarily high pressure on the sensor rod.

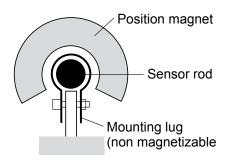
The position magnet as well as the sensor rod must be protected against wear by constructive methods. The position magnet must not drag along the sensor rod (especially when mopunted in a hydraulic cylinder)! As an alternative to PCSTMAG2 a high-tensile and abrasion-poor special magnet is available (PCSTMAG2-G1/G2).

Non-magnetizable screws, distance bushes, circlips etc. must be used for mounting support. Use non-magnetic screws only to fix the position magnet! If a magnetic material is used a minimum distance of 8 mm (dimension "A") must be observed between the position magnet and the mounting flange resp. the hydraulic piston (see drawing below).

As an option is the distance bush "PCSTMAG2-BFS1" available.

<u>Note:</u> The magnetic leakage field of any environment at the position of the magnet must not exceed 0.5 mT.





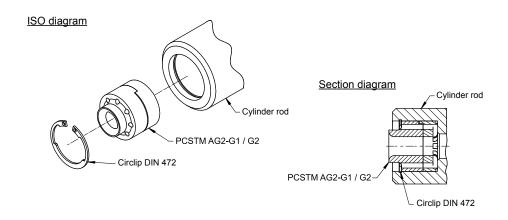

# Mounting PCSTxx (continuation)

If mounted in horizontal position, sensors with more than 1000 mm range (length) must be provided with mechanical support at every 1000 mm and use the position magnet PCSTMAG1 (U-shape, see drawing)).

The rod of sensors with more than 1000 mm range and without mechanical support may have a sag or possibly break!

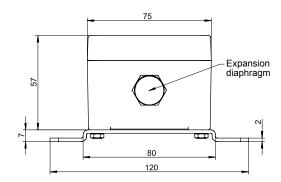
Example: Sensor support

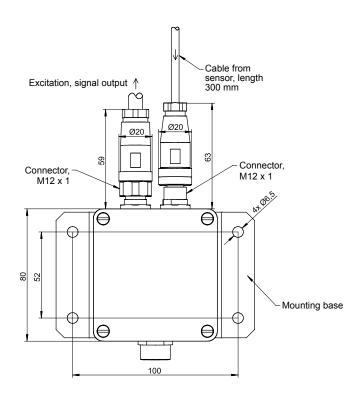


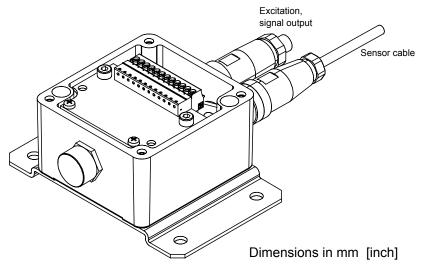

Therefore the sensor rod must not pulled out of the bore of the hydraulic cylinder completely. A minimum length of 50 mm must remain in the piston resp. the piston rod.

# Mounting of PCSTMAG2-G1/G2

Take both parts of the housing out of the bag, put it together and insert it into the designated bore of the cylinder piston. The correct position of the housing is very important (see drawing).


Please check that the four rubber pads are located in the four holes of the part of the housing. The four rubber pads ensure the horizontal compensation. The circlip DIN 472 fixes the housing of PCSTMAG1. Check the that the circlip fits into the groove completely.


Assemble PCSTMAG2-G2 in the same way.






#### Mounting PCST26 Separate electronics housing









# Mounting PCST26 Separate

electronics

Keep the cable between sensor and electronics housing well separated from power wiring, the minimum distance must be 500 mm.

To achieve a good noise rejection a low-pass filter with a cutoff frequency of 5 kHz is recommended at the input of the subsequent electronics.

To avoid potential compensation currents via the shield it is recommended to connect all facility units (components) with potential compensation lines.



Do only connect sensor and electronics housing with the <u>same</u> serial number!

Do not operate the system before the sensor and the electronics housing have been connected and screwed together properly.

Do not connect or disconnect the electronics housing while the power is on!

www.asm-sensor.com



# Electromagnetic Compatibility (EMC)

The electromagnetic compatibility depends on wiring practice. Recommended wiring:

- The profile housing sensor models can be mounted isolated using the appropriate mounting sets including an isolation strip.
- Use shielded twisted pair sensor cable.
- Keep sensor signal well separated from power wiring e.g. AC wiring, motor or relay. Use separate conduit or ducts for each.

If application includes highly electromagnetic interference emitting equipment like switch converter drives additional measures are recommended:

- Use a twisted pair cable, shielded per pair and common.
- Use shielded conduits or ducts connected to ground potential.

# Repair and disposal



Sensors and accessories have to be repaired and adjusted at ASM in Moosinning.

In order to avoid risk of injury and improper handling do not try to repair. No warranty or liability will be granted for opened sensors.

Disposal: Send metal parts for recycling!

# POSICHRON® Analog output

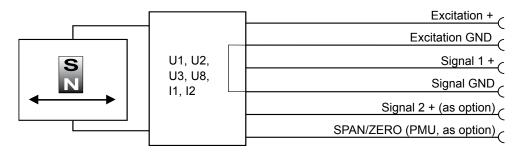


Signal conditioner U1, U2, U3, U8 Voltage output



| Excitation voltage      | <b>U1, U2</b> : 18 36 V DC; <b>U3, U8</b> : 10 36 V                                |
|-------------------------|------------------------------------------------------------------------------------|
| Excitation current      | Typ. 23/46 mA at 24/12 V DC, 80 mA max.                                            |
| Output voltage          | <b>U1</b> : 0 10 V; <b>U2</b> : 0.5 10 V; <b>U3</b> : 0 5 V; <b>U8</b> : 0.5 4.5 V |
| Output current          | 2 mA max.                                                                          |
| Resolution              | 16 bit                                                                             |
| Stability (temperature) | ±50 x 10 <sup>-6</sup> / °C f.s.                                                   |
| Protection              | Reverse polarity, short circuit                                                    |
| Output noise            | $0.5 \text{ mV}_{RMS}$                                                             |
| Operating temperature   | -40 +85 °C                                                                         |
| EMC                     | EN 61326-1:2013                                                                    |

Signal conditioner I1, I2
Current output (3 wire)



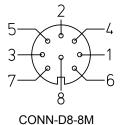

|                         | 40 00 V DO ( D 0500 40 00 V DO          |
|-------------------------|-----------------------------------------|
| Excitation voltage      | 18 36 V DC f.R<250Ω 10 36 V DC          |
| Excitation current      | Typ. 36/66 mA at 24/12 V DC, 80 mA max. |
| Load resistor           | 350 $\Omega$ max.                       |
| Output current I1       | 4 20 mA, 30 mA max (at failure)         |
| Output current I2       | 0 20 mA, 30 mA max (at failure)         |
| Resolution              | 16 bit                                  |
| Stability (temperature) | ±50 x 10 <sup>-6</sup> / °C f.s.        |
| Protection              | Reverse polarity, short circuit         |
| Output noise            | 0.5 mV <sub>RMS</sub>                   |
| Operating temperature   | -40 +85 °C                              |
| EMC                     | EN 61326-1:2013                         |

# POSICHRON® Analog output



#### Signal diagram




| Signal wiring | Output signals<br>U1, U2, U3, U8, I1, I2 | Connector pin | Cable output color |
|---------------|------------------------------------------|---------------|--------------------|
|               | Excitation +                             | 1             | white              |
|               | Excitation GND                           | 2             | brown              |
|               | Signal 1 +                               | 3             | green              |
|               | Signal GND                               | 4             | yellow             |
|               | Signal 2 + (as option)                   | 5             | grey               |
|               | SPAN/ZERO (PMU, as option)               | 6             | pink               |

When using multiple magnets the distance between two magnets must be min. 70 mm to identify the single magnets definitely.

**Connection**Mating connector

View to sensor connector





Output with 4 (5)-pin connector M12

View to sensor connector

CONN-M12-5M



| Ciamalinina   | Output signals      | Connector pin |
|---------------|---------------------|---------------|
| Signal wiring | Excitation +        | 1             |
|               | Signal 1 +          | 2             |
|               | GND                 | 3             |
|               | Signal 2 + (option) | 4             |
|               | PMU optional        | 5             |

# Output with 4-pin connector M8

View to sensor connector

CONN-M8-4M



| Cinnalinina   | Output signals | Connector pin |
|---------------|----------------|---------------|
| Signal wiring | Excitation +   | 1             |
|               | Excitation GND | 2             |
|               | Signal +       | 3             |
|               | PMU optional   | 4             |

22 MAN-PC-E-2014 ASM GmbH

# POSICHRON® Analog output



Diagnostic signal on error for U1, U2, U3, U8, I1, I2

#### The analog signal output in case of error

In case of error (e.g. magnet missing) the analog output signal will assume a state according to the following options:

|                          | U1                          | U2                                  | U3                          | U8                                  | <b>I</b> 1                  | I2                          |
|--------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-----------------------------|
| Alarm_HIGH<br>(standard) | U <sub>out</sub> ≥ 10,5 V   | U <sub>out</sub> ≥ 10,5 V           | U <sub>out</sub> ≥ 10 V     | U <sub>out</sub> ≥ 10 V             | I <sub>out</sub> ≥ 21 mA    | I <sub>out</sub> ≥ 21 mA    |
| Alarm_LOW<br>(/U)        | _                           | U <sub>out</sub> < 0,25 V<br>(U2/U) | _                           | U <sub>out</sub> < 0,25 V<br>(U8/U) | 1,5 2 mA<br>(I1/U)          | _                           |
| Alarm_HOLD               | -keeps last<br>valid state- | -keeps last<br>valid state-         | -keeps last<br>valid state- | -keeps last<br>valid state-         | -keeps last valid<br>state- | -keeps last<br>valid state- |
| ()                       | (U1/H)                      | (U2/H)                              | (U3/H)                      | (U8/H)                              | (I1/H)                      | (I2/H)                      |

#### Alarm\_HIGH (standard)

The output voltage resp. the output current is at HIGH level (overrange).

#### Alarm LOW

The output voltage resp. the output current is at LOW level (underrange).

#### Alarm HOLD

The output voltage resp. the output current will keep the last valid state.

# Settling time for analog outputs

Settling time for POSICHRON® sensors with analog outputs:

<15 ms / 0 ... 90%

Option - PMU for analog outputs U1, U2, U3, U8, I1, I2

#### Programming of the start and end value by the customer

The option PMU allows to program the start value and the end value of the output range by a programming signal SPAN/ZERO available at the connector. This Signal SPAN/ZERO must be connected with GND via a push button, then position magnet of the sensor must be moved to the start resp. end position. Pushing the button between 1 and 4 seconds sets the actual position as start position, pushing the button more than 5 seconds sets the actual position as end position. The values will be stored and are available after switching off the sensor.

To reset the sensor to the factory values the button must be pushed when the sensor is switched on.

#### POSICHRON® Output SSI



#### Synchronous serial interface SSI



| Output                     | RS422                                                     |
|----------------------------|-----------------------------------------------------------|
| Excitation voltage         | 10 36 V DC, residual ripple 10 mV <sub>ss</sub>           |
| Excitation current         | Typ. 22 mA at 24 V DC, typ. 46 mA at 12 V DC, 150 mA max. |
| Clock frequency            | 100 kHz 1 MHz                                             |
| Code                       | Gray code, dual code                                      |
| Resolution                 | ≥5 µm                                                     |
| Delay between pulse trains | >25 µs                                                    |
| Stability (temperature)    | ±50 x 10 <sup>-6</sup> / °C f.s.                          |
| Operating temperature      | -40 +85 °C                                                |
| Protection                 | Reverse polarity, short circuit                           |
| EMC                        | EN 61326-1:2013                                           |

#### **Data format** (Train of 26 pulses)



#### Signal diagram

# Sensor circuit DATA Z0 RS422 Z0 DATA CLOCK Z0 RS422 Z0 CLOCK

Note:

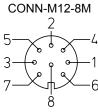
 Cable length
 Baud rate

 50 m
 100-1000 kHz

 100 m
 100-300 kHz

Extension of the cable length will reduce the maximum transmission rate.

The signals CLOCK/CLOCK and DATA/DATA must be connected in a twisted pair cable, common shielded.


| Signal wiring | Signal         | Plug connec-<br>tion | Cable connection |
|---------------|----------------|----------------------|------------------|
|               | Excitation +   | 1                    | white            |
|               | Excitation GND | 2                    | brown            |
|               | CLOCK          | 3                    | green            |
|               | CLOCK          | 4                    | yellow           |
|               | DATA           | 5                    | grey             |
|               | DATA           | 6                    | pink             |

#### **Error indication:**

If the sensor cannot detect a magnet the position value will assume the maximum value (0xFFFFFFF).

#### View to sensor connector





CONN-D8-8M

24 MAN-PC-E-2014 ASM GmbH



#### **Description**

CANopen Interface according to CANopen-Standards CiA DS301 DS406, for WB Linear position sensors. Process data objects for position and CAM switches. Programmable parameters include Preset, Offset, Resolution, CAM switches, Transmission mode.

| CANOP            | Communication profile           | CANopen CiA 301 V 4.02, Slave                                                    |  |
|------------------|---------------------------------|----------------------------------------------------------------------------------|--|
| CANopen          | Device profile                  | Encoder CiA 406 V 3.2                                                            |  |
|                  | Configuration services          | Layer Setting Service (LSS), CiA Draft Standard 305 (transmission rate, node id) |  |
|                  | Error Control                   | Node Guarding, Heartbeat, Emergency Message                                      |  |
| CAN              | Node ID                         | Default: 127; programmable via LSS or SDO                                        |  |
|                  | PDO                             | 1-4 TxPDO, 0 RxPDO, static mapping                                               |  |
|                  | PDO Modes                       | Event-/Time triggered, Remote-request, Sync cyclic/acyclic                       |  |
|                  | SDO                             | 1 server, 0 client                                                               |  |
|                  | CAM                             | 8 cams                                                                           |  |
|                  | Transmission rates              | 50 kBaud to 1 MBaud, default: 125 kBaud; programmable via LSS or SDO             |  |
|                  | Bus connection                  | M12 connector, 5 pins                                                            |  |
|                  | Integrated terminating resistor | $R_T = 120 \Omega$ , optional                                                    |  |
|                  | Bus, galvanic isolated          | No                                                                               |  |
|                  |                                 |                                                                                  |  |
| Specifications   | Excitation voltage              | 18 36 V DC                                                                       |  |
| opecinications - | Excitation current              | typ. 20 mA at 24 V DC<br>typ. 40 mA at 12 V DC<br>max. 80 mA                     |  |
|                  | Measuring rate                  | 1 kHz (asynchronous)                                                             |  |
|                  | Stability (temperature)         | ±50 x 10 <sup>-6</sup> / °C f.s. typical                                         |  |
|                  | Repeatability                   | 1 LSB                                                                            |  |
|                  | Operating temperature           | -40 +85 °C                                                                       |  |
|                  | Protection                      | Reverse polarity, short circuit                                                  |  |
|                  | EMC                             | EN 61326-1:2013                                                                  |  |

When using multiple magnets the distance between two magnets must be min. 70 mm to identify the single magnets definitely!

| Magazzaanant vata                 | Measurement range | Measurement rate |
|-----------------------------------|-------------------|------------------|
| Measurement rate depending on the | 100 500 mm        | 1 1.4 ms         |
| measurement range                 | 500 1000 mm       | 1.4 2.5 ms       |
|                                   | 1000 2000 mm      | 2.5 4.3 ms       |
|                                   | 2000 4000 mm      | 4.3 8.8 ms       |
|                                   | 4000 6000 mm      | 8.8 ms 13 ms     |



#### Setup

Before connecting the sensor to the CAN-Bus the devices have to be checked for correct bitrate and unique node-IDs. Both parameters are configurable by Layer-Setting-Service (LSS) or by Service Data Object (SDO). After power-on the sensor will enter pre-operational state and send a boot-up message being ready for configuration by Service Data Objects. Parameters configured by the user can be stored nonvolatile by SAVE command. On receiving "NMT-Node-Start" the sensor transits to operational state and starts process data transmission. When "Auto-Start" is configured the sensor will automatically transit to operational after boot-up without a need for the Node-Start message.

Node monitoring is supported by Node Guarding and Heartbeat protocol. Node Guarding implements cyclic querying of the node status by the NMT-Master within the guard time window. The Heartbeat protocol provides automatic transmission of the node status (heartbeat message) by the slave within producer heartbeat time window.

Following the CAN example protocols included in this manual the sensor may be used without CANopen master device.



#### Warning notice

- Changing parameters may cause unexpected machine movement.
- Changing parameters may influence dependent parameters
- e.g. changing the resolution may have influence on position of CAM switches.
- Precautions have to be taken to avoid damage to human and machine parts!
- Change parameters only when machine is in a safe condition!



#### Service Data Object (SDO) COB-Id

Service data objects (SDO) provide a peer to peer communication between master and slave. The communication object identifier (COB) of the SDO is defined by the Node-Id.

| SDO             | COB-Id         | Default COB-Id |
|-----------------|----------------|----------------|
| Master to Slave | 600h + Node-Id | 67Fh           |
| Slave to Master | 580h + Node-Id | 5FFh           |

#### **Process Data Object (TPDO)**

Real time data transfer is provided by Process Data Objects (PDO). The PDO mapping is fixed. The PDO COB-Id is by default setting derived from the Node-Id (Predefined Connection Set) but may be changed to application specific values by object PDO COB-Id 1800..1803 Sub-Index-1. DLC defines the length of the data field.

| COB-ld    | DLC    |       | Data Frame |       |
|-----------|--------|-------|------------|-------|
| COB-IG    | DLC    | Byte0 |            | Byte7 |
|           |        | Data  |            |       |
| 180h      | length | Frame |            |       |
| + Node-Id | lengui | max 8 |            |       |
|           |        | Byte  |            |       |

Transmission behaviour of TPDO-1, -2, -4 is configurable by object PDO Communication Parameter 1800, 1801, 1803 sub-indices -1, -2, -3 and -5.

| Transmission type example for TPDO-1 | COB-ld<br>1800-1           | Transmission Type 1800-2 | Inhibit Time<br>1800-3 | Event Timer [ms]<br>1800-5 |
|--------------------------------------|----------------------------|--------------------------|------------------------|----------------------------|
| Cyclic Asynchronous                  |                            | FEh                      | -                      | 1 0FFFFh                   |
| Change of State                      |                            | FEh                      | XX                     | 0                          |
| Synchronous                          |                            | N = 1 240                |                        | -                          |
| Disable TPDO<br>Enable TPDO          | 80 00 xx xx<br>00 00 xx xx | -                        |                        | -                          |

Transmission type «cyclic asynchronous» triggers TPDO-transmission periodically with a time period defined by the event timer.

Transmission type «change of state» will be enabled If the event timer is set to «0». This will trigger TPDO-transmission on change of the position value where «Inhibit time» defines a minimum time delay between consecutive TPDOs.

In «synch mode» a TPDO is transmitted on reception of a number of one or multiple SYNC commands. Enable or disable a TPDO by setting Bit 31 of the COB-ld '0' resp. '1' (Default: «0» Enabled).



#### **Object Dictionary Communication Profile CiA 301**

| Object                          | Index<br>[hex] | Sub-<br>index | Access | Туре   | Default | Value Range /<br>Note |
|---------------------------------|----------------|---------------|--------|--------|---------|-----------------------|
| Device type                     | 1000           | 0             | ro     | U32    | 0A0196h | encoder profile ,406' |
| Error register                  | 1001           | 0             | ro     | U8     | 0       |                       |
| COB-ID-Sync                     | 1005           | 0             | rw     | U32    | 80      |                       |
| Manufacturer device name        | 1008           | 0             | ro     | String | -       |                       |
| Manufacturer hardware version   | 1009           | 0             | ro     | String | -       |                       |
| Manufacturer software version   | 100A           | 0             | ro     | String | -       |                       |
| Guard time                      | 100C           | 0             | rw     | U16    | 0       | 0 7FFFh               |
| Life time factor                | 100D           | 0             | rw     | U8     | 0       | 0 FFh                 |
| Save Settings                   | 1010           | 1             | W      | U32    | -       | "save" (65766173h)    |
| Load Manufacturer Settings      | 1011           | 1             | W      | U32    | -       | "load" (64616F6Ch)*   |
| COB-ID-EMCY                     | 1014           | 0             | ro     | U32    | FFh     | NodelD+80h            |
| Producer heartbeat time         | 1017           | 0             | rw     | U16    | 0       | 0 7FFFh               |
| Idendity Object VendorID        | 1018           | 1             | ro     | U32    | 252h    |                       |
| Idendity Object Product Code    |                | 2             | ro     | U32    | -       |                       |
| Idendity Object Revision number |                | 3             | ro     | U32    | -       |                       |
| Idendity Object Serial number   |                | 4             | ro     | U32    | -       |                       |
| COB-ID Server->Client           | 1200           | 1             | ro     | U32    | 67Fh    | - SOD                 |
| COBID Client-> Sever            |                | 2             | ro     | U32    | 5FFh    | - SDO                 |
| PDO1 COB-ID                     | 1800           | 1             | rw     | U32    | 1FFh    | 181h 1FFh             |
| PDO1 Transmission-Type          |                | 2             | rw     | U8     | FEh     | 0 FFh                 |
| PDO1 Inhibit time               |                | 3             | rw     | U16    | 0       | 0 7FFFh               |
| PDO1 Event timer                |                | 5             | rw     | U16    | 64h     | 0 7FFFh               |
| PDO2 COB-ID                     | 1801           | 1             | rw     | U32    | 2FFh    | 281h 2FFh             |
| PDO2 Transmission-Type          |                | 2             | rw     | U8     | 0       | 0 FFh                 |
| PDO2 Inhibit time               |                | 3             | rw     | U16    | 0       | 0 7FFFh               |
| PDO2 Event timer                |                | 5             | rw     | U16    | 0       | 0 7FFFh               |
| PDO3 COB-ID                     | 1802           | 1             | rw     | U32    | 3FFh    | 381h 3FFh             |
| PDO3 Transmission-Type          |                | 2             | rw     | U8     | 0       | 0 FFh                 |
| PDO3 Inhibit time               |                | 3             | rw     | U16    | 0       | 0 7FFFh               |
| PDO3 Event timer                |                | 5             | rw     | U16    | 0       | 0 7FFFh               |
| PDO4 COB-ID                     | 1803           | 1             | rw     | U32    | 4FFh    | 481h 4FFh             |
| PDO4 Transmission-Type          |                | 2             | rw     | U8     | 0       | 0 FFh                 |
| PDO4 Inhibit time               |                | 3             | rw     | U16    | 0       | 0 7FFFh               |
| PDO4 Event timer                |                | 5             | rw     | U16    | 0       | 0 7FFFh               |
| •                               |                |               |        |        |         |                       |



| Object               | Index<br>[hex] | Sub-<br>index | Access | Туре | Default   | Value Range /<br>Note |
|----------------------|----------------|---------------|--------|------|-----------|-----------------------|
| TPDO1-Mapped Object1 | 1A00           | 1             | ro     | U32  | 60200120h |                       |
| TPDO1-Mapped Object2 |                | 2             | ro     | U32  | 60300110h |                       |
| TPDO1-Mapped Object3 |                | 3             | ro     | U32  | 63000108h |                       |
| TPDO1-Mapped Object4 |                | 4             | ro     | U32  | 20300008h |                       |
| TPDO2-Mapped Object1 | 1A01           | 1             | ro     | U32  | 60200220h |                       |
| TPDO2-Mapped Object2 |                | 2             | ro     | U32  | 60300210h |                       |
| TPDO2-Mapped Object3 |                | 3             | ro     | U32  | 63000208h |                       |
| TPDO2-Mapped Object4 |                | 4             | ro     | U32  | 20300008h |                       |
| TPDO3-Mapped Object1 | 1A02           | 1             | ro     | U32  | 60200320h |                       |
| TPDO3-Mapped Object2 |                | 2             | ro     | U32  | 60300310h |                       |
| TPDO3-Mapped Object3 |                | 3             | ro     | U32  | 63000308h |                       |
| TPDO3-Mapped Object4 |                | 4             | ro     | U32  | 20300008h |                       |
| TPDO4-Mapped Object1 | 1A03           | 1             | ro     | U32  | 60200420h |                       |
| TPDO4-Mapped Object2 |                | 2             | ro     | U32  | 60300410h |                       |
| TPDO4-Mapped Object3 |                | 3             | ro     | U32  | 63000408h |                       |
| TPDO4-Mapped Object4 |                | 4             | ro     | U32  | 20300008h |                       |
| NMT-Startup          | 1F80           | 0             | rw     | U32  | 0         | 0, 8                  |

www.asm-sensor.com



#### **Device Profile CiA 406**

| Object                 | Index<br>[hex] | Sub-<br>index | Access | Туре | Default | Value Range /<br>Note |
|------------------------|----------------|---------------|--------|------|---------|-----------------------|
| Manufacturer specific  |                |               |        |      |         |                       |
| Node-ID                | 2000           |               | rw     |      | 127     | 1127                  |
| Bitrate                | 2010           |               | rw     |      | 4       | 04, 6                 |
| Error                  | 2030           |               | ro     |      |         |                       |
| Hysteresis             | 2040           |               | rw     |      |         |                       |
| Number of Positions    | 2080           |               | rw     |      | 1       | 14                    |
| User Offset            | 2100           |               | rw     |      | 0       | 0 0FFFFh              |
| Filter                 | 2102           |               | rw     |      | 0       | 1255                  |
| Linear Encoder CiA406  |                |               |        |      |         |                       |
| Operating Parameters   | 6000           |               | rw     |      | 0       |                       |
| Total Measuring Range  | 6002           |               | rw     |      |         |                       |
| Position Step Setting  | 6005           | 1             | rw     |      | 50 µm   |                       |
| Speed Step Setting     | 6005           | 2             | rw     |      | 1mm/s   |                       |
| Preset Values          | 6010           | 14            | rw     |      | 0       |                       |
| Position Values        | 6020           | 14            | ro     |      | 0       |                       |
| Speed Values           | 6030           | 14            | ro     |      | 0       |                       |
| Cyclic Timer           | 6200           |               | rw     |      | 100     |                       |
| Profile and SW Version | 6507           |               | ro     |      |         |                       |
| Serial Number          | 650B           |               | ro     |      |         |                       |
| Offset values          | 650C           | 14            | ro     |      | 0       |                       |
| CAM CiA406             |                |               |        |      |         |                       |
| Cam state register     | 6300           | 14            | ro     |      |         |                       |
| Cam enable register    | 6301           | 14            | rw     |      | 0       |                       |
| Cam polarity register  | 6302           | 14            | rw     |      | 0       |                       |
| Cam 1-8 low limit      | 6310<br>6317   | 14            | rw     |      | 0       |                       |
| Cam 1-8 high limit     | 6320<br>6327   | 14            | rw     |      | 0       |                       |
| Cam 1-8 hysteresis     | 6330<br>6337   | 14            | rw     |      | 0       |                       |

#### **Operating Parameters Bit Code**

| 15  | <br> | <br>4 | 3 | 2   | 1 | 0   |
|-----|------|-------|---|-----|---|-----|
|     |      |       |   | sfc |   | cs  |
| MSB |      |       |   |     |   | LSB |

cs = 0/1 Code sequence CW/CCW sfc = 0/1 Scaling function disabled/enabled



#### **Process Data Object (TPDO) Mapping**

| TPDO    | COB-Id           | DLC | Byte 0 Data Frame |          |          |     | Byte 7 |          |               |        |
|---------|------------------|-----|-------------------|----------|----------|-----|--------|----------|---------------|--------|
| TPDO-01 | 180h<br>+Node-Id | 8   |                   | Position | (4 Byte) |     | Speed  | (2 Byte) | CAM<br>Status | Error  |
| TPDO-04 | +Noue-iu         |     | LSB               |          |          | MSB | LSB    | MSB      | 1 Byte        | 1 Byte |

#### **CAM State Data Format**

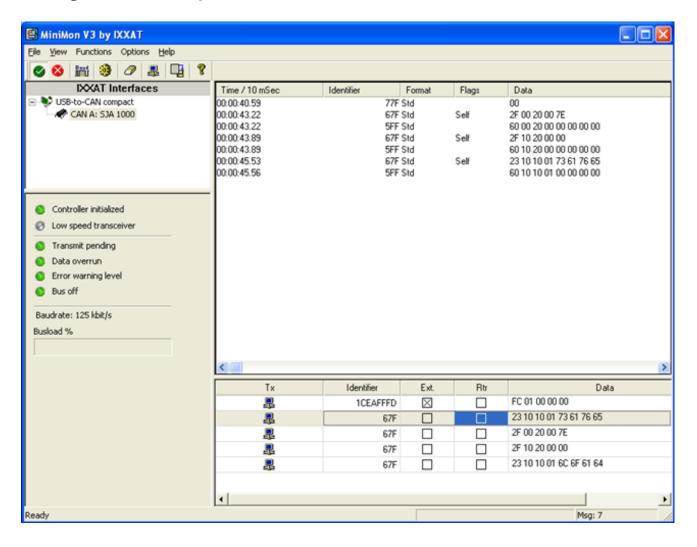
| 8 Bit CAM State Register |       |  |  |  |  |  |  |  |  |
|--------------------------|-------|--|--|--|--|--|--|--|--|
| b7 b6 b5 b4 b3 b2 b1 b0  |       |  |  |  |  |  |  |  |  |
| CAM 8                    | CAM 8 |  |  |  |  |  |  |  |  |

#### **TPDO Default Settings**

| TPDO                                                 | Default COB-Id | Default Transmission Type |
|------------------------------------------------------|----------------|---------------------------|
| TPDO1: 1st magnet Position, Speed, CAM Status, Error | 1FFh           | Cyclic Asynchronous 100ms |
| TPDO2: 2nd magnet Position, Speed, CAM Status, Error | 2FFh           | Sync Mode                 |
| TPDO3: 3rd magnet Position, Speed, CAM Status, Error | 3FFh           | Sync Mode                 |
| TPDO4: 4th magnet Position, Speed, CAM Status, Error | 4FFh           | Sync Mode                 |

#### Bit Rate (Object 2010)

| Bit Rate Index | Bit Rate [kbit/s] |
|----------------|-------------------|
| 0              | 1000              |
| 1              | 800               |
| 2              | 500               |
| 3              | 250               |
| 4              | 125               |
| 6              | 50                |


| PDO Error-Byte | Error | Meaning                                                                                       |
|----------------|-------|-----------------------------------------------------------------------------------------------|
|                | 0     | Normal operation                                                                              |
|                | 1 n   | Malfunction, number of missing position magnets according to index 2080 (number of positions) |
|                | 81 8n | to much position magnets                                                                      |



#### **Examples**

Example protocols are prepared using the IXXAT USB-to-CAN PC-Interface with CAN-Monitor "miniMon" (IXXAT Automation GmbH, D-88250 Weingarten). These examples enable the user to configure and to run the CANopen slaves from a host PC without using a CANopen master ECU. The miniMon-screen has the configuration and status window at left side, a receive message window and a transmit message window below.

#### **Configuration Example 1 - screenshot**

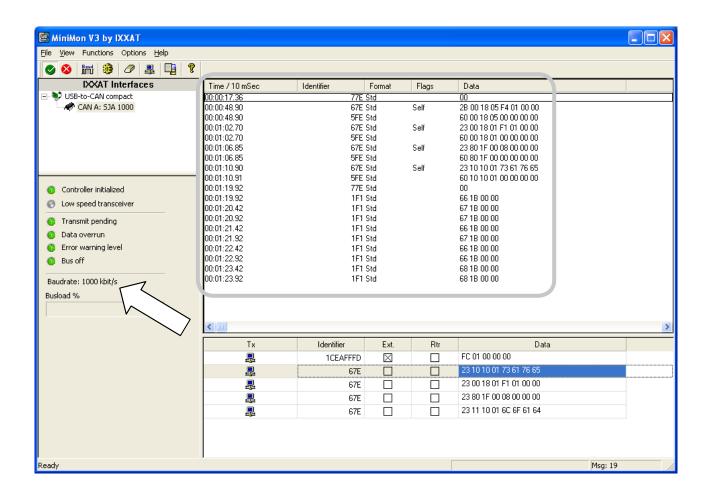


32 MAN-PC-E-2014 ASM GmbH



#### **Configuration Example 1 - detailed explanation**

The example shows the Sensor responding on POWER ON with the Boot-Up message. By SDO message the node-Id and the baud rate will be changed to 7Eh and 1000kbit/s. Finally the host sends an SDO "SAVE" to store the configuration nonvolatile.


Note: Changes of of node-Id and baud rate will become effective on next POWER ON sequence. So the SAVE command has to address the old SDO-COB-Id.

#### Screen Shot Explanation:

| Time / 10 mSec Ider |                | Identifier    |     | Format | Flags | Data                    |
|---------------------|----------------|---------------|-----|--------|-------|-------------------------|
| 00:00:40.59         | Boot-Up mes    | sage          | 77F | Std    |       | 00                      |
| 00:00:43.22         | Set node ld to | 7E            | 67F | Std    | Self  | 2F 00 20 00 7E          |
| 00:00:43.22         | Response       |               | 5FF | Std    |       | 60 00 20 00 00 00 00 00 |
| 00:00:43.89         | Set baud rate  | to 1000kbit/s | 67F | Std    | Self  | 2F 10 20 00 00          |
| 00:00:43.89         | Response       |               | 5FF | Std    |       | 60 10 20 00 00 00 00 00 |
| 00:00:45.53         | SAVE           |               | 67F | Std    | Self  | 23 10 10 01 73 61 76 65 |
| 00:00:45.56         | Response       |               | 5FF | Std    |       | 60 10 10 01 00 00 00 00 |

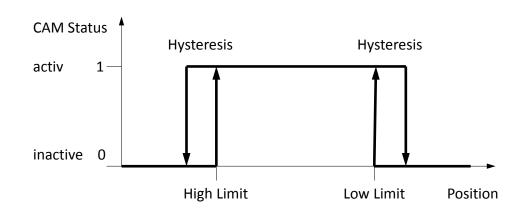


#### **Configuration Example 2 - screenshot**





#### **Configuration Example 2 - detailed explanation**


The message window shows the slave responding on POWER ON with the Boot-Up message on new node-id 7Eh. Event timer of PDO1 is changed to 500ms and COB-Id of PDO1 is changed to 1F1h. Finally "Autostart" is activated (automatic transition to operational) and the configuration stored nonvolatile with "SAVE". On POWER OFF / POWER ON the slave starts sending PDOs asynchronously with the new COB-Id after the Boot-Up message.

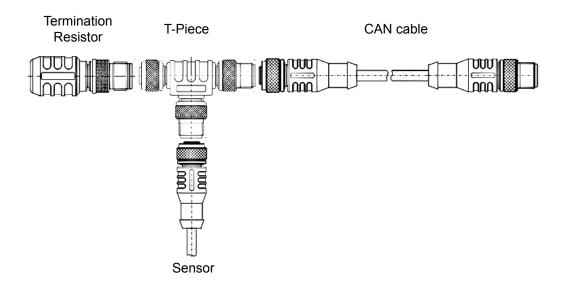
#### Screenshot explanation:

| Time / 10 m9 | Sec                    | Identifier   |         | Format  | Flags | Data                    |
|--------------|------------------------|--------------|---------|---------|-------|-------------------------|
| 00:00:17.36  | Boot-Up Messa          | age          | 77E     | Std     |       | 00                      |
| 00:00:48.90  | Set PDO1 Eve           | nt Timer 500 | 67E     | Std     | Self  | 2B 00 18 05 F4 01 00 00 |
| 00:00:48.90  | Response               |              | 5FE     | Std     |       | 60 00 18 05 00 00 00 00 |
| 00:01:02.70  | Set PDO1 COB-ld to 1F1 |              | 67E     | Std     | Self  | 23 00 18 01 F1 01 00 00 |
| 00:01:02.70  | Response               |              | 5FE     | Std     |       | 60 00 18 01 00 00 00 00 |
| 00:01:06.85  | Set Autostart          |              | 67E     | Std     | Self  | 23 80 1F 00 08 00 00 00 |
| 00:01:06.85  | Response               |              | 5FE     | Std     |       | 60 80 1F 00 00 00 00 00 |
| 00:01:10.90  | SAVE                   |              | 67E     | Std     | Self  | 23 10 10 01 73 61 76 65 |
| 00:01:10.91  | Response POWER OFF     |              | 5FE     | Std     |       | 60 10 10 01 00 00 00 00 |
| 00:01:19.92  | Boot Up on POWER ON    |              | 77E     | Std     |       | 00                      |
| 00:01:19.92  | Cyclic PDO Transfer    |              | 1F1     | Std     |       | 66 1B 00 00             |
| 00:01:20.42  | on Power On            |              | 1F1 Std |         |       | 67 1B 00 00             |
| 00:01:20.92  |                        |              | 1F1     | 1F1 Std |       | 67 1B 00 00             |
| 00:01:21.42  |                        |              | 1F1 Std |         |       | 66 1B 00 00             |
| 00:01:21.92  |                        |              | 1F1 Std |         |       | 67 1B 00 00             |
| 00:01:22.42  |                        |              | 1F1 Std |         |       | 66 1B 00 00             |
| 00:01:22.92  | •••                    |              | 1F1 Std |         |       | 66 1B 00 00             |
| 00:01:23.42  |                        |              | 1F1 Std |         |       | 68 1B 00 00             |
| 00:01:23.92  |                        |              | 1F1     | Std     |       | 68 1B 00 00             |



# **CAM** function




| Signal wiring /<br>connection | Signal       | Plug connection | Cable connection |
|-------------------------------|--------------|-----------------|------------------|
|                               | Shield       | 1               | braid            |
|                               | Excitation + | 2               | brown            |
|                               | GND          | 3               | white            |
|                               | CAN-H        | 4               | blue             |
|                               | CAN-L        | 5               | black            |

View to sensor connector



# CAN bus wiring

Connect the device by a T-connector to the CAN trunk line. Total length of stubs should be minimized. <u>Do not use</u> single stub lines longer than 0.5 m. Connect terminating resistors 120 Ohm at both ends of the trunk line.





### **Description**

Linear encoder according to standard SAE J1939. Configuration of operating parameters by proprietary-A-Message (peer-to-peer connection). Process data exchange by proprietary-B-Message (broadcast).

|                                  | CAN specification            | ISO 11898, Basic and Ful         | I CAN 2.0 B                                                                   |  |  |  |
|----------------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------------------|--|--|--|
| <b>CANJ1939</b><br>CAN SAE J1939 | Transceiver                  | 24V-compliant, not isolate       | ed                                                                            |  |  |  |
| CAN SAE J 1939                   | Communication profile        | SAE J1939                        |                                                                               |  |  |  |
|                                  | Baud rate                    | 250 kbit/s                       |                                                                               |  |  |  |
| S                                | Internal temination resistor | 120 $\Omega$ (option)            |                                                                               |  |  |  |
| CAN                              | Address                      | Default 247d, configurable       | e                                                                             |  |  |  |
|                                  |                              |                                  |                                                                               |  |  |  |
| NAME Fields                      | Arbitrary address capable    | 0                                | No                                                                            |  |  |  |
| NAME FIEIUS                      | Industry group               | 0                                | Global                                                                        |  |  |  |
|                                  | Vehicle system               | 7Fh (127d)                       | Non specific                                                                  |  |  |  |
|                                  | Vehicle system instance      | 0                                |                                                                               |  |  |  |
|                                  | Function                     | FFh (255d)                       | Non specific                                                                  |  |  |  |
|                                  | Function instance            | 0                                |                                                                               |  |  |  |
|                                  | ECU instance                 | 0                                |                                                                               |  |  |  |
|                                  | Manufacturer                 | 145h (325d)                      | Manufacturer ID                                                               |  |  |  |
|                                  | Identity number              | 0nnn                             | Serial number 21 bit                                                          |  |  |  |
| Parameter Group                  | Configuration data           | PGN EF00h                        | Proprietary-A<br>(PDU1 peer-to-peer)                                          |  |  |  |
| Numbers (PGN)                    | Process data                 | PGN FFnnh                        | Proprietary-B<br>(PDU2 broadcast);<br>nn Group Extension<br>(PS) configurable |  |  |  |
|                                  | Excitation voltage           | 18 36 V DC                       |                                                                               |  |  |  |
| Specifications                   | Excitation current           | Typ. 20 mA for 24 V, max         | . 80 mA                                                                       |  |  |  |
|                                  | Measuring rate               | 1 kHz (asynchronous)             |                                                                               |  |  |  |
|                                  | Stability (temperature)      | ±50 x 10 <sup>-6</sup> / °C f.s. |                                                                               |  |  |  |
|                                  | Repeatability                | 1 LSB                            |                                                                               |  |  |  |
|                                  | Operating temperature        | -40 +85 °C                       |                                                                               |  |  |  |
|                                  | Protection                   | Reverse polarity, short cir      | cuit                                                                          |  |  |  |
|                                  | Dielectric strength          | 500 V (V AC, 50 Hz, 1 mi         | n.)                                                                           |  |  |  |
|                                  | EMC                          | EN 61326-1:2013                  |                                                                               |  |  |  |
|                                  |                              |                                  |                                                                               |  |  |  |

When using multiple magnets the distance between two magnets must be min. 70 mm to identify the single magnets definitely!

Signal wiring and connection see page 39.



### Setup procedure



#### Warning notice

- Changing the parameters can cause a sudden step of the instantaneous value and can result in unexpected machine (re)actions!
- Precautions to prevent danger for man or machine are necessary!
- Execute parametrizing at standstill of the machine only!

#### Node-ID

The default Node-ID the sensor will claim on power up is user or factory configurable. The user can configure by "Commanded Address" service according to the J1939 standard or by Peer-to-Peer message as described below.

#### **User configuration**

User accessible parameters including node-ID may be configured by peer-to-peer proprietary A message PGN 0EF00h. The parameters are accessed by byte-index and read/write operations coded in the data frame. The slave will return the data frame including the acknowledge code. Parameter values will be effective immediatly. On execution of "Store Parameters" the configuration is saved nonvolatile.

Peer-to-peer message (PGN 0x00EF00), send/receive format

|               | PG                           | SN                              |       | 8 Byte data frame |   |     |             |  |  |     |  |
|---------------|------------------------------|---------------------------------|-------|-------------------|---|-----|-------------|--|--|-----|--|
|               | PGN <sub>HIGH</sub>          | PGN <sub>LOW</sub><br>(Node-ID) | Index | Rd/Wr             | 0 | Ack | 4-Byte Data |  |  |     |  |
| Requ          | quest: Control Unit → Sensor |                                 |       |                   |   |     |             |  |  |     |  |
| $\rightarrow$ | 0EFh                         | dd                              | i     | 0/1               | 0 | 0   | LSB MSE     |  |  | MSB |  |
| Respo         | ponse: Control Unit ← Sensor |                                 |       |                   |   |     |             |  |  |     |  |
| ←             | 0EFh                         | СС                              | i     | 0/1               | 0 | а   | LSB MSB     |  |  | MSB |  |

a: Acknowledge codes:

0: Acknowledge, 81: Read only parameter, 82: Range overflow,

83: Range underflow, 84: Parameter does not exist

dd: Sensor Node-ID (Default 0F7h, 247d)

cc: Control-Unit Node-ID



### **Configuration examples**

Example: Set Transmit Cycle to 10ms, Index 31, Node-ID 247d (F7h)

|               | PGN <sub>HIGH</sub> | PGN <sub>LOW</sub> |     |     |    | 8 Byte da | ata frame |    |    |    |
|---------------|---------------------|--------------------|-----|-----|----|-----------|-----------|----|----|----|
| $\rightarrow$ | 0EFh                | 0F7h               | 1Fh | 01h | 00 | 00        | 0Ah       | 00 | 00 | 00 |
| $\leftarrow$  | 0EFh                | СС                 | 1Fh | 01h | 00 | 00        | 0Ah       | 00 | 00 | 00 |

Example: Read Transmit Cycle value, Index 31

| $\rightarrow$ | 0EFh | 0F7h | 1Fh | 00 | 00 | 00 | 00  | 00 | 00 | 00 |
|---------------|------|------|-----|----|----|----|-----|----|----|----|
| ←             | 0EFh | CC   | 1Fh | 00 | 00 | 00 | 0Ah | 00 | 00 | 00 |

Example: Store Parameters permanently, Index 28

| $\rightarrow$ | 0EFh | 0F7h | 1Ch | 01h | 00 | 00 | 65h | 76h | 61h | 73h |
|---------------|------|------|-----|-----|----|----|-----|-----|-----|-----|
| ←             | 0EFh | СС   | 1Ch | 01h | 00 | 00 | 65h | 76h | 61h | 73h |

Example: Reload factory defaults, Index 29

| $\rightarrow$ | 0EFh | 0F7h | 1Dh | 01h | 00 | 00 | 64h | 61h | 6Fh | 6Ch |
|---------------|------|------|-----|-----|----|----|-----|-----|-----|-----|
| ←             | 0EFh | СС   | 1Dh | 01h | 00 | 00 | 64h | 61h | 6Fh | 6Ch |

Example: Broadcast (PGN $_{\rm LOW}$  = 0FFh) - Reload factory defaults of all sensors, Index 29

| $\rightarrow$ | 0EFh | 0FFh | 1Dh | 01h | 00 | 00 | 64h | 61h | 6Fh | 6Ch |  |
|---------------|------|------|-----|-----|----|----|-----|-----|-----|-----|--|
| $\leftarrow$  | 0EFh | СС   | 1Dh | 01h | 00 | 00 | 64h | 61h | 6Fh | 6Ch |  |

| Table of              | Index 21 | Bit rate    |
|-----------------------|----------|-------------|
| Table of configurable | 0        | 1000 kBit/s |
| bit rates             | 1        | 800 kBit/s  |
| (see next page,       | 2        | 500 kBit/s  |
| index 21)             | 3        | 250 kBit/s  |
| ,                     | 4        | 125 kBit/s  |
|                       | 5        | 50 kBit/s   |



### **Configurable parameters** Linear Encoder Parameters - Standard Configuration

| Parameter                  | Index<br>[dec] | Default   | Range / Selection               | Unit   | Read /<br>Write     |
|----------------------------|----------------|-----------|---------------------------------|--------|---------------------|
| Control                    |                |           |                                 |        |                     |
| Node ID                    | 20             | 247       | 128 247                         |        | rd/wr 1)            |
| Baude rate                 | 21             | 3 (250kB) | 0 5                             |        | rd/wr <sup>2)</sup> |
| Termination resistor       | 22             | 0         | -                               |        | rd <sup>2)</sup>    |
| Store parameters           | 28             | -         | "save" 3)                       |        | wr                  |
| Reload factory defaults    | 29             | -         | "load" 3)                       |        | wr <sup>2)</sup>    |
| Communication              |                |           |                                 |        |                     |
| Transmit mode              | 30             | 0         | 0 timer<br>1 request<br>2 event |        | rd/wr               |
| Transmit cycle             | 31             | 100       | 10 65535                        | ms     | rd/wr               |
| PGN Group Extension        | 32             | 0         | 0 255                           |        | rd/wr               |
| Event mode hysteresis      | 38             | 1000      | 0 10000                         | steps  | rd/wr               |
| Process data byte order    | 39             | 0         | 0 little /<br>1 big endian      |        | rd/wr               |
| Measurement                |                |           |                                 |        |                     |
| Code sequence              | 70             | 0         | 0 CW<br>1 CCW                   |        | rd/wr               |
| Number of position magnets | 72             | 1         | 1 4                             |        | rd/wr               |
| Measuring step             | 73             | 50        | 1 1000                          | μm     | rd/wr               |
| Preset                     | 74             | 0         | 0 10000                         | steps  | rd/wr               |
| Averaging Filter           | 77             | 1         | 1 255                           |        | rd/wr               |
| Identification             |                |           |                                 |        |                     |
| SW Version                 | 198            | -         | 4 bytes                         | number | rd                  |
| Serial number              | 199            | -         | 4 bytes                         | number | rd                  |
| Identity number            | 200            | -         | 21 bit                          | number | rd                  |

<sup>1)</sup> Change of Node ID by writing to index 20 is effective immediately and initiates Address Claiming

Broadcast access by PGN<sub>LOW</sub> = 0FFh addresses the specified index of all sensors.

#### Process data

Process data are transmitted by broadcast proprietary-B-Message PGN 0x00FFxx where the low byte is configurable. If the number of position magnets is configured to more than one magnet, position and velocity values are transmitted by a number of successive process data messages.

Byte order of process data message

| B7    | B6      | B5       | B4  | B3       | B2 | B1  | В0 |  |
|-------|---------|----------|-----|----------|----|-----|----|--|
| Error | M_Index | Velocity |     | Position |    |     |    |  |
| *)    | 1 4     | MSB      | LSB | MSB      |    | LSB |    |  |

\*) Error codes: 0 = no error

1,2 ... = error, number of missing magnets

081h, 082h ... = error, number of too many magnets detected

M\_Index: Auto incrementing index for subsequent process data management in multimagnet

configuration.

40 MAN-PC-E-2014 ASM GmbH


<sup>2)</sup> Effective on next power-up

<sup>&</sup>quot;save" MSB...LSB: 73h, 61h, 76h, 65h "load" MSB...LSB: 6Ch, 6Fh, 61h, 64h



| Ciamalinima. /             | Signal       | Plug connection | Cable connection |
|----------------------------|--------------|-----------------|------------------|
| Signal wiring / connection | Shield       | 1               | braid            |
| Connection                 | Excitation + | 2               | brown            |
|                            | GND          | 3               | white            |
|                            | CAN-H        | 4               | blue             |
|                            | CAN-L        | 5               | black            |

View to sensor connector



### CAN bus wiring

Connect the device by a T-connector to the CAN trunk line. Total length of stubs should be minimized. <u>Do not use</u> single stub lines longer than 0.5 m. Connect terminating resistors 120 Ohm at both ends of the trunk line.

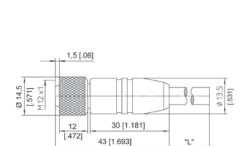




Connector cable for POSICHRON® position sensors 8 pin M12

The 8-lead shielded cable is supplied with a mating 8-pin 90° M12 connector at one end and 8 wires at the other end. Available lengths are 2, 5 and 10 m. Wire: cross sectional area 0.25 mm².

Order code:


Length in m

Connector cable for POSICHRON® position sensors 8 pin M12

The 8-lead shielded cable is supplied with a mating 8-pin M12 connector at one end and 8 wires at the other end. Available lengths are 2, 5 and 10 m. Wire: cross sectional area 0.25 mm².

Order code:

Length in m



Connector cable wiring - M12, 8 pin

| Connector pin / cable color |       |       |        |      |      |      |     |  |  |  |
|-----------------------------|-------|-------|--------|------|------|------|-----|--|--|--|
| 1                           | 2     | 3     | 4      | 5    | 6    | 7    | 8   |  |  |  |
| White                       | Brown | Green | Yellow | Grey | Pink | Blue | Red |  |  |  |

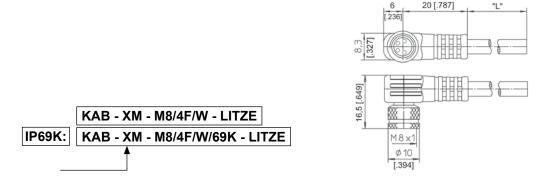
Connector cable for POSICHRON® position sensors 4 pin M8

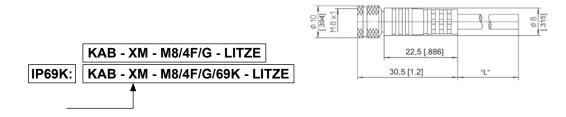
The 4-lead shielded cable is supplied with a mating 4-pin 90° M8 connector at one end and 4 wires at the other end. Available lengths are 2, 5 and 10 m. Wire: cross sectional area 0.14 mm<sup>2</sup>.

Order code:

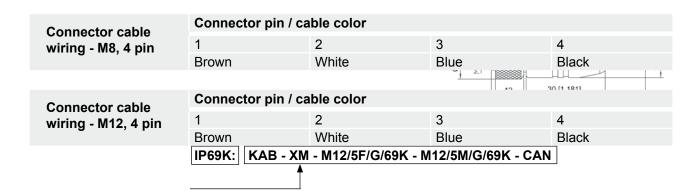
Length in m

Connector cable for POSICHRON® position sensors 4 pin M8

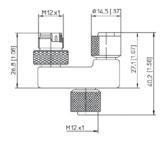

The 4-lead shielded cable is supplied with a mating 4-pin M8 connector at one end and 4 wires at the other end. Available lengths are 2, 5 and 10 m. Wire: cross sectional area 0.14 mm<sup>2</sup>.


Order code:

Length in m


42 MAN-PC-E-2014 ASM GmbH












KAB - TCONN - M12/5M - 2M12/5F - CAN



Connector/bus cable for POSICHRON® position sensors 5 pin M12

5 pin M12 CAN bus The 5-lead shielded cable is supplied with a female 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a Mab 5-pin M12 connector at one end and a M12 connector at one end a M12 con



Order code:

Length in m

T-piece for bus cable

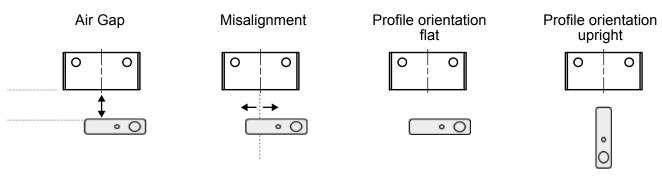
5 pin M12 CAN bus

Order code:

Terminating resistance

5 pin M12 CAN bus

Order code:

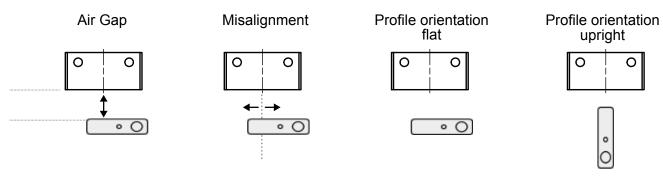

44 MAN-PC-E-2014 ASM GmbH



### PCMAG5

Magnet Guidance Position

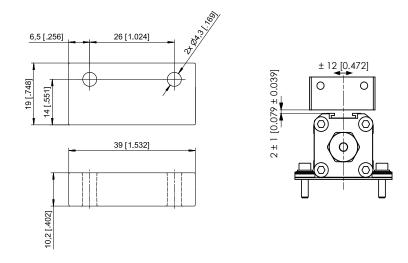
| Maximum Misalignment           |           | ± 12 mm      |        |         |        |
|--------------------------------|-----------|--------------|--------|---------|--------|
| Profile orientation            |           | flat         |        | upright |        |
| Linearity                      |           | L02          | L10    | L02     | L10    |
| Profile                        | Magnet    | Air Gap [mm] |        |         |        |
| PCQA22 /<br>PCQA24             | PCMAG5    | 1 - 2        | 1 - 4  |         |        |
|                                | PCMAG5-6  | 2 - 4        | 2 - 6  | -       |        |
|                                | PCMAG5-20 | 4 - 8        | 4 - 10 | -       |        |
|                                | PCMAG5-25 | 6 - 8        | 4 - 14 |         |        |
| PCPF23 /<br>PCFP24             | PCMAG5    | 1 - 3        | 1 - 5  | 1 - 3   | 1 - 5  |
|                                | PCMAG5-6  | 3 - 5        | 3 - 7  | 3 - 5   | 3 - 7  |
|                                | PCMAG5-20 | 5 - 9        | 5 - 11 | 5 - 9   | 5 - 11 |
|                                | PCMAG5-25 | 7 - 9        | 5 - 15 | 7 - 9   | 5 - 15 |
| PCFP25                         | PCMAG5    | 3 - 5        | 3 - 7  | 2 - 4   | 2 - 6  |
|                                | PCMAG5-6  | 5 - 7        | 5 - 9  | 4 - 6   | 4 - 8  |
|                                | PCMAG5-20 | 7 - 11       | 7 - 13 | 6 - 10  | 6 - 12 |
|                                | PCMAG5-25 | 9 - 11       | 7 - 17 | 8 - 10  | 6 - 16 |
| PCRP21                         | PCMAG5    | 1 - 4        | 1 - 6  |         |        |
|                                | PCMAG5-6  | 4 - 6        | 4 - 8  |         |        |
|                                | PCMAG5-20 | 6 - 10       | 6 - 12 |         |        |
|                                | PCMAG5-25 | 8 - 10       | 6 - 16 |         |        |
| PCRP32                         | PCMAG5    | 1 - 3        | 1 - 5  |         |        |
|                                | PCMAG5-6  | 3 - 5        | 3 - 7  |         |        |
|                                | PCMAG5-20 | 5 - 9        | 5 - 11 |         |        |
|                                | PCMAG5-25 | 7 - 9        | 5 - 15 |         |        |
| PCST24 /<br>PCST25 /<br>PCST27 | PCMAG5    | 1 - 4        | 1 - 6  |         |        |
|                                | PCMAG5-6  | 4 - 6        | 4 - 8  |         |        |
|                                | PCMAG5-20 | 6 - 10       | 6 - 12 |         |        |
|                                | PCMAG5-25 | 8 - 10       | 6 - 16 |         |        |



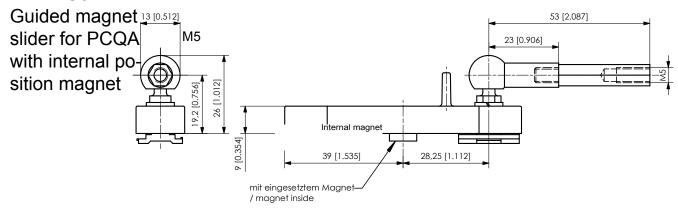



### PCMAG5

Magnet Guidance Position

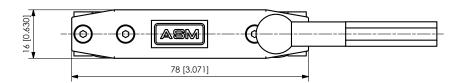

| Maximum Misalignment           |           | ± 6 mm       |        |         |        |
|--------------------------------|-----------|--------------|--------|---------|--------|
| Profile orientation            |           | flat         |        | upright |        |
| Linearity                      |           | L02          | L10    | L02     | L10    |
| Profile                        | Magnet    | Air Gap [mm] |        |         |        |
| PCQA22 /<br>PCQA24             | PCMAG5    | 1 - 4        | 1 - 6  |         |        |
|                                | PCMAG5-6  | 2 - 6        | 2 - 8  |         |        |
|                                | PCMAG5-20 | 4 - 10       | 4 - 12 |         |        |
|                                | PCMAG5-25 | 6 - 10       | 4 - 16 |         |        |
| PCPF23 /<br>PCFP24             | PCMAG5    | 1 - 5        | 1 - 7  | 1 - 5   | 1 - 7  |
|                                | PCMAG5-6  | 3 - 7        | 3 - 9  | 3 - 7   | 3 - 9  |
|                                | PCMAG5-20 | 5 - 11       | 5 - 13 | 5 - 11  | 5 - 13 |
|                                | PCMAG5-25 | 7 - 11       | 5 - 17 | 7 - 11  | 5 - 17 |
| PCFP25                         | PCMAG5    | 3 - 7        | 3 - 9  | 2 - 6   | 2 - 8  |
|                                | PCMAG5-6  | 5 - 9        | 5 - 11 | 4 - 8   | 4 - 10 |
|                                | PCMAG5-20 | 7 - 13       | 7 - 15 | 6 - 12  | 6 - 14 |
|                                | PCMAG5-25 | 9 - 13       | 7 - 19 | 8 - 12  | 6 - 18 |
| PCRP21                         | PCMAG5    | 1 - 6        | 1 - 8  |         |        |
|                                | PCMAG5-6  | 4 - 8        | 4 - 10 |         |        |
|                                | PCMAG5-20 | 6 - 12       | 6 - 14 |         |        |
|                                | PCMAG5-25 | 8 - 12       | 6 - 18 |         |        |
| PCRP32                         | PCMAG5    | 1 - 5        | 1 - 7  |         |        |
|                                | PCMAG5-6  | 3 - 7        | 3 - 9  |         |        |
|                                | PCMAG5-20 | 5 - 11       | 5 - 13 |         |        |
|                                | PCMAG5-25 | 7 - 11       | 5 - 17 |         |        |
| PCST24 /<br>PCST25 /<br>PCST27 | PCMAG5    | 1 - 6        | 1 - 8  |         |        |
|                                | PCMAG5-6  | 4 - 8        | 4 - 10 |         |        |
|                                | PCMAG5-20 | 6 - 12       | 6 - 14 |         |        |
|                                | PCMAG5-25 | 8 - 12       | 6 - 18 |         |        |






#### PCMAG5

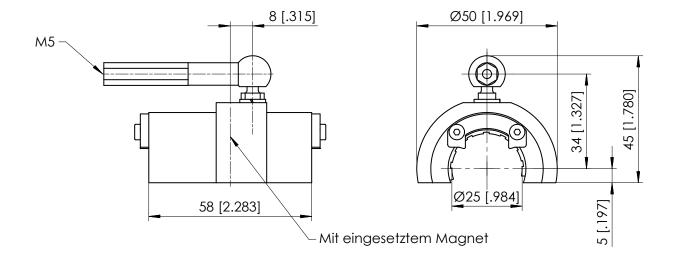
Standard magnet




#### PCMAG3

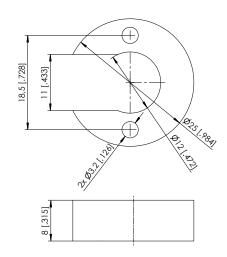


#### **PCRPMAG6**


Guided magnet slider for PCRP21 with internal position magnet



Internal magnet


Dimensions in mm [inch]





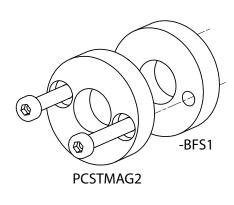


### **PCSTMAG1**

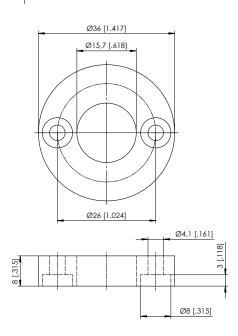


Ø32 [1.260]

Ø13 [.512]


Ø22,5 [.886]

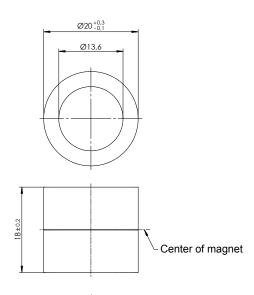
Ø8 [.315] - 3 [.118] tief


### PCSTMAG2

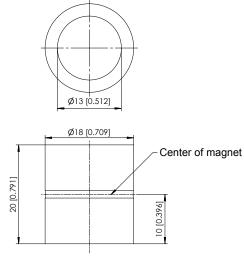
(standard)

#### PCSTMAG2-BFS1

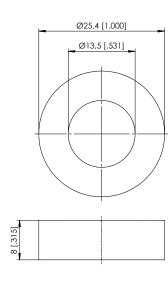



### **PCSTMAG5**




Dimensions in mm [inch]

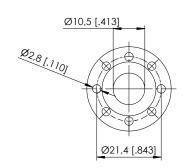


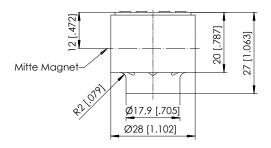

### PCSTMAG2-MH1



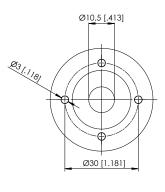
#### PCSTMAG2-MH2

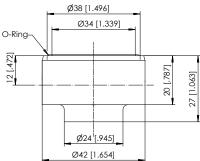



### PCSTMAG2-MH3




Dimensions in mm [inch]



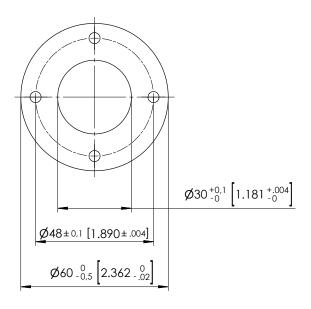


### PCSTMAG2-G1

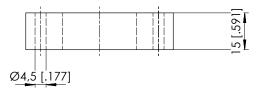




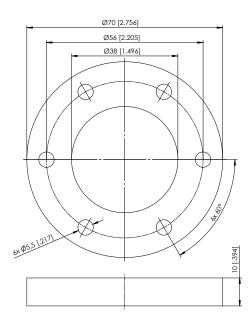
### PCSTMAG2-G2







Dimensions in mm [inch]

Dimensions informative only. For guaranteed dimensions consult factory.



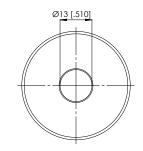

### **PCSTMAG7**

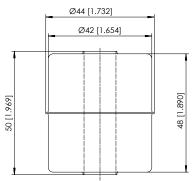




#### **PCSTMAG4**




Dimensions in mm [inch]

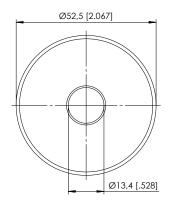


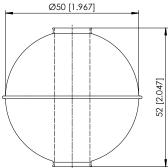

#### PCSTMAG3

(float, continuous pressure up to 9 bar, for media with a specific gravity of ≥0,75 g/cm³)

Material: 1.4404







Note: Dependent on the design the available measurement range is reduced of 25 mm on both ends!

#### PCSTMAG6

(float, continuous pressure up to 30 bar, for media with a specific gravity of ≥0,7 g/cm³)

Material: 1.4571





Note: Dependent on the design the available measurement range is reduced of 25 mm on both ends!

Dimensions in mm [inch]

Dimensions informative only. For guaranteed dimensions consult factory.

### POSICHRON® Reliability characteristics



Models PCFP23, PCFP24, PCFP25,

PCST24, PCST25, PCST26, PCST27,

PCRP21, PCRP32, PCQA22, PCQA24

| Outputs | U1        | Voltage output | 0 10 V    |
|---------|-----------|----------------|-----------|
|         | U2        | Voltage output | 0.5 10 V  |
|         | U3        | Voltage output | 0 5 V     |
|         | U8        | Voltage output | 0.5 4.5 V |
|         | <b>I1</b> | Current output | 4 20 mA   |
|         | 12        | Current output | 0 20 mA   |

| Characteristics | Probability of failure | 0,6 x 10 <sup>-6</sup> /h |
|-----------------|------------------------|---------------------------|
|                 | Life period MTTF       | 190 years                 |
|                 | Working Life           | 10 years                  |

**Standards** SN29500 Failure rate electronic components (Siemens)

# **POSICHRON® Declaration of Conformity**



### **Declaration of Conformity**



#### The position sensor POSICHRON

Manufacturer: ASM GmbH

Am Bleichbach 18-24

85452 Moosinning / Germany

Model: PCQA22, PCQA24, PCFP23, PCFP24, PCFP25

PCRP21, PCRP32, PCST24, PCST25, PCST26, PCST27

Options: U1, - U2, - U3, - U8, - I1, -I2

- SSI, - CANOP, - CANJ1939

complies with the following standards and directives:

Directives: 2004/108/EG (EMC)

Standards: EN 61326-1:2013 (EMC)

Moosinning, 02.09.2013

i.A. Peter Wirth Head of Development

### **ASM GmbH Automation • Sensorik • Messtechnik**

Am Bleichbach 18-24 Telephone: +49 8123 986-0 Internet: www.asm-sensor.com

E-Mail: info@asm-sensor.de

85452 Moosinning / Germany Telefax: +49 8123 986-500

