

www.AMTI.biz | sales@amtimail.com

MC5-10000 SPECIFICATIONS

127 x 125.7 mm

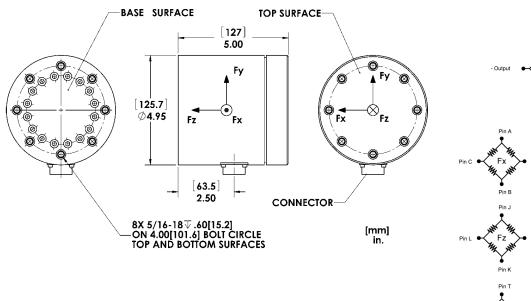
The MC5 is a cylindrical, six-axis transducer with threaded inserts on its top and bottom surfaces. The body of the load cell is manufactured from high strength aluminum with an anodized finish. An elastomeric 0-ring seal protects the strain gages and wiring. Internal sealing of the strain gages further ensures long life and consistent, reliable performance.

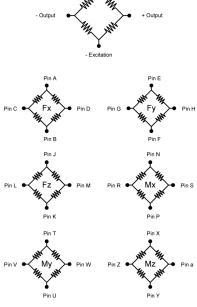
Units: Metric	; ▼	Capacity:	44482 N ▼
---------------	-----	-----------	-----------

Dimensions(LxDia.)

Weight	3.18 Kg.			Sensing ele	Sensing elements			Strain gage bridge		
Channels	Fx, Fy, Fz, Mx, My, Mz			Amplifier			Required			
Body Material	Aluminum			Analog outputs			6 Channels			
Temperature range	-17.78 to 51.67°C			Digital outputs			None			
Excitation	10V maximum			Crosstalk			< 2% on all channels			
Fx, Fy, Fz hysteresis	± 0.2% full scale output		Fx, Fy, Fz non-linearity		<u>+</u>	± 0.2% full scale output				
Channel	Fx	Fy	Fz	Units	Mx	Му	Mz	Units		
Capacity	22242	22242	44484	Ν	1626	1626	1129	N-m		
Sensitivity	0.112	0.112	0.0281	μv /v-N	2.55	2.55	1.55	μv/v-N-m		
Natural frequency	-	-	-	Hz	1250	1250	-	Hz		
Stiffness (X 105)	1683	1683	8416	N/m	6.78	6.78	4.52	N-m/rad		
Resolution	To determine the resolution of your system, please use our <u>Output Calculator</u> .									
	The Fx, Fy, and Fz capacities can be exceeded by a factor of 3 as long as the Mx, My, and Mz capacities are not exceeded.									
Notes:	The Mx and My capacities are calculated in reference to the transducer origin located 2.37 in (6 cm) below the top surface.									
	The listed natural frequency is the lowest natural frequency for the force sensor and will dominate.									

Published specifications subject to change without notice.


Last modified:2016-08-23


13/12/2016	Biomechanics Biotribology Biomedical and Human Performance Related Products Multi-Axis Force Plates, Force Sensors, Instrumented Equipme.

TECHNICAL DRAWINGS

Footprint Drawing

Electrical Drawing

Bridges Fz; Mz = 700 ohms Bridges Fx; Fy; Mx; My; = 350 ohms Connector Type: Souriau 851-02E16-26P50-44

© Advanced Mechanical Technology, Inc.

176 Waltham Street, Watertown, MA 02472-4800 USA

1-617-926-6700