

CHARACTERISTICS

ADVANTAGES

MEMS technology

High protection level and wide temperature range

High temperature stability

Resolution up to 0.01°

Single axis range ±180° or 0 ... 360°

Dual axis range up to \pm 60°

Status LED

Rugged housing

High accuracy

Reliability and long service life for outdoor applications

Easy installation and cost saving

Designed for harsh environmental conditions

Relay, NPN or PNP output

High protection leve

Shock/vibration resistant

Redundancy output

Reverse polarity protection

Wide range temperature

MEMS sensors technology

Horizontal version

Vertical version

Relay output

NPN output

PNP output

Directive 2011/65/EU

conformity

A tilt switch is a switching output inclinometer that toggles the output status when the tilt value exceeds the pre-set threshold.

TLK100 is the new family of tilt sensors, based on MEMS technology, capable of working in extreme conditions and hard environments, subjected to sharp movements, shocks and high vibrations.

The availability of numerous options guarantees the maximum flexibility in choice and makes it ideal for many application such as: window cleaning platforms, aerial platforms, lifting platforms and firefighter ladders.

Thanks to the high protection class, the sensor is perfectly suited for use in humid or polluted conditions, furthermore, the compact and flat design well-fit the tight installation spaces.

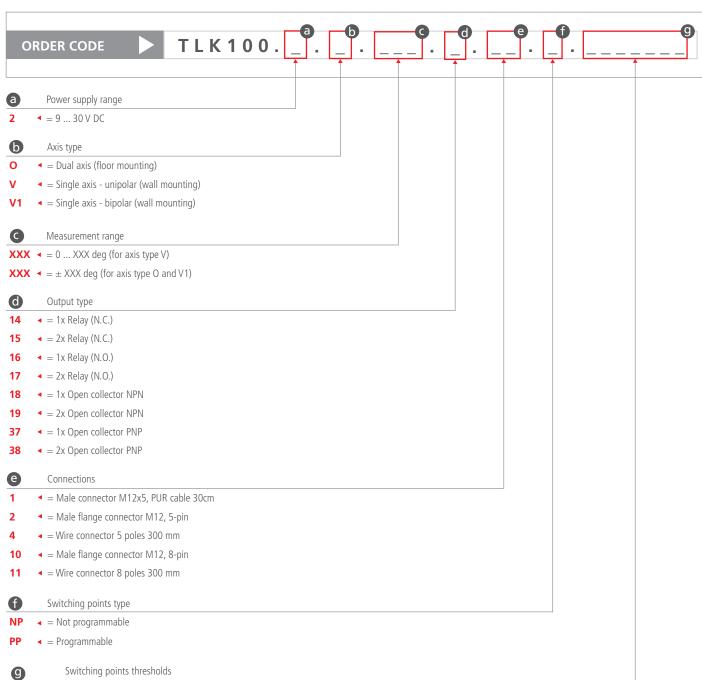
Agricultural machinery

Construction

Earth moving

Handling and lifting

TLK100


TILT SWITCH

MEMS technology switching output inclinometer

PRODUCT CODE

aalbbD ◀ = Threshold values are defined with the following coding rule:

"aa" is the integer part of the value "bb" is the decimal part.

The dash char (-) separates threshold values of the outputs.

Examples:

Order code		Axis type	Thresholds	Output 1 Switching rule	Thresholds	Output 2 Switching rule
02I1D03I1D	4	0		X < -X1 or $X > X1$ or $Y < -Y1$ or $Y > Y1$		
02I1D03I1D-05I2D04I1D	4	0		X < -X1 or $X > X1$ or $Y < -Y1$ or $Y > Y1$	$X2 = \pm 5.2^{\circ}$ $Y2 = \pm 4.1^{\circ}$	X < -X1 or $X > X1$ or $Y < -Y1$ or $Y > Y1$
90I5D	•	V	Z1 = 90.5°	Z < 0 or Z > Z1		
90I5D-100I2D	4	V	Z1 = 90.5°	Z < 0 or Z > Z1	Z2 = 100.5°	Z < 0 or Z > Z2
90I5D	•	V1	$Z1 = \pm 90.5^{\circ}$	Z < -Z1 or $Z > Z1$		
90I5D-100I2D	•	V1	$Z1 = \pm 90.5^{\circ}$	Z < -Z1 or $Z > Z1$	$Z2 = \pm 100.5^{\circ}$	Z < -Z2 or $Z > Z2$

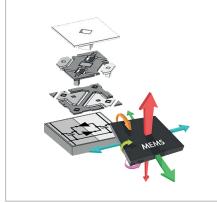
The company reserves the right to make any kind of design or functional modification at any moment without prior notice

TLK100

TILT SWITCH

MEMS technology switching output inclinometer

TECHNICAL SPECIFICATION


Measuring range	Up to ±60° for dual axis type ±180° and 0 360° for single axis type
Linearity (Ta = 25 °C)	±0.5% FS
Resolution	0.01°
Temperature range	-40°C +85°C
Temperature drift	±0.01 °/°C typ.
Protection class	IP67 (acc. to EN 60529)
Switch-ON/OFF Delay time	0 s (Customizable from 0 to 10 s)
Hysteresis	1° (Customizable)
Housing	Polybutylene terephthalate
Weight approx.	225 g
Shock resistance	acc. to EN 60068-2-27 50 G, 11 ms, 100 shocks per axis Axis : X, Y, Z
Vibration resistance	acc. to EN 60068-2-6 10 500 Hz, 10g, 2h per axis Axis : X, Y, Z

OPERATING PRINCIPLE

MEMS, or Micro Electro-Mechanical System, is a chip-based technology where sensors are com-posed of proof masses sprung between capaci-tive plates. Each mass act like a moving plate of a variable capacitor formed by an array of interlaced 'fingers'.

When the sensor is tilted, the mass moves changing the distance between the plates and therefore the capacitance. By measuring the capacitance variation the angle value can be detected.

ELECTRICAL CHARACTERISTICS

Power supply	9 30 V DC
Current consumption	12V ≤ 18 mA (with relay coil energized) 24V ≤ 9 mA (with relay coil energized)
Max. switching voltage	48 VDC/VAC
Max. switching current	1.5 A
Max. switching power	30 W
Endurance @ 30 VDC, 1 A (resistive), 25 °C, 1 Hz	>1x10 ⁵ operations
Electromagnetic compatibility	acc. to EN 61000-6-2, EN 61000-6-4
EU Conformity	EMC directive 2014/30/EU RoHS directive 2011/65/EU + 2015/863/EU

REDUNDANT RELAY ELECTRICAL CONNECTION M12 X 5 PINS

Pinout

	Flange connector	
1	+Vin	
2	GND	
3	Relay 1 COM	
4	Relay 1 N.O. / N.C.	
5	Relay 2 COM*	
6	Relay 2 N.O. / N.C.*	
7	Zero**	
8	Serial program	

NPN / PNP ELECTRICAL CONNECTION M12 X 5 PINS

Pinout

		Flange connector	Wire connector	
	1	+Vin	WH	
	2	GND	BU	
	3	NPN / PNP 1	BK	
	4	NPN / PNP 2*	GY*	
	5	Serial program / Zero**	BN**	

SINGLE RELAY ELECTRICAL CONNECTION M12 X 5 PINS

Pinout

	Flange connector	Wire connector
1	+Vin	WH
2	GND	BU
3	Relay 1 COM	BK
4	Relay 1 N.O. / N.C.	GY
5	Serial program / Zero**	BN**

The device is protected against reverse polarity of power supply (Pin 1 and 2). No protection to incorrect connection of all the other pins. Applying a voltage to other pins, can damage the device!

* = Only for redundant versions, output type 19 & 38. In all other cases leave unconnected.

** = Connect to +Vin for 2s to set zero point

L.4 - DS0014 R00 TLK100

COUNTING DIRECTION

Dual axis

TLK100 dual axis inclinometer

The 2-dimensional tilt sensor must be mounted with the base plate in horizontal position, i.e. parallel to the horizontal line. The sensor can be tilted to both the X and Y axes at the same time.

A separate measure is provided for each axis.

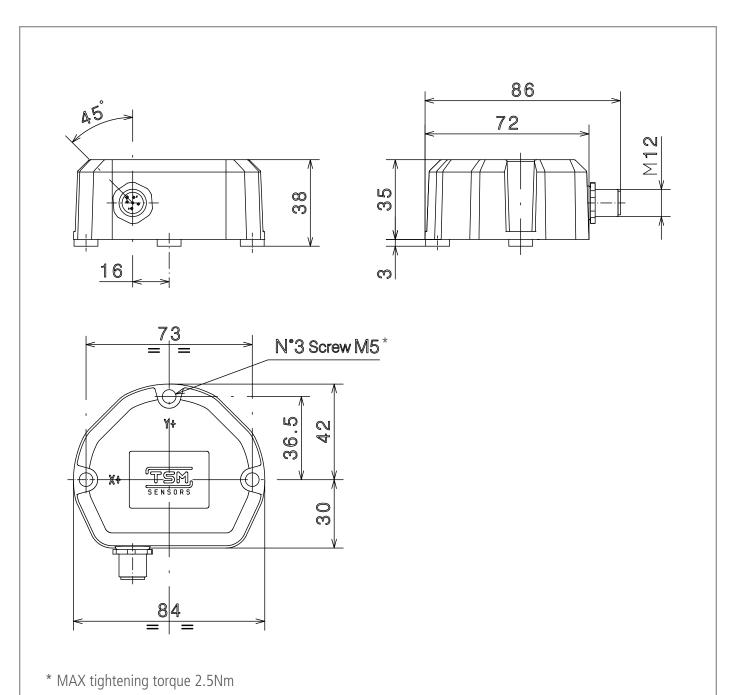
Single axis

TLK100 single axis inclinometer

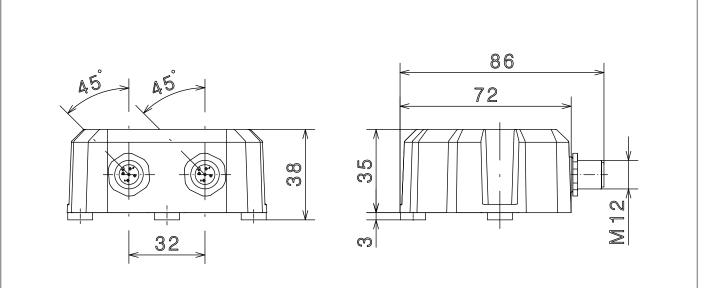
The 1-dimensional tilt sensor must be installed with the base plate in vertical position, i.e. Z-axis perpendicular to the force of gravity.

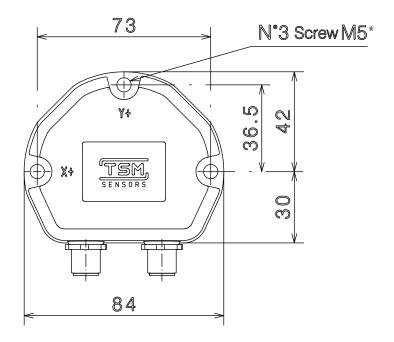
The default "zero point" position is the one shown in the following images.

V (0...360°)


V1 (± 180°)

DIMENSIONS [mm]




TLK100 TILT SWITCH

MEMS technology switching output inclinometer

* MAX tightening torque 2.5Nm